江苏世通仪器检测服务有限公司2012年由广东世通出资2000余万元在江苏昆山成立,地址位于江苏昆山市昆嘉路379号。
江苏世通拥有自主产权实验大楼,实验室面积达3000多平方米。2013年经国家实验室认可委员(CNAS)认可,认可号L6634,国际实验室互认组织(ILAC-MRA)互认授权! 2014年由苏州质量技术监督局备案。实验室校准源,人才队伍精良。中心设有:力学、长度、衡器、电学、电磁、热工、几何量、轻工等校准检测实验室。
公司自成立以来深入贯彻世通仪器检测自主创新理念,坚持快速发展,不断提高科技创新能力,深耕仪器检测校准细分领域,荣获“昆山市科技研发机构”、“国家高新”企业。
江苏世通以江苏为地基,辐射长三角地区,围绕本地化市场服务的需求,在仪器检测校准、证书认证等领域拓展合作方式、优化自身服务举措,进一步提高服务响应机制,目前已经于上海、南京、杭州、浙江、福建等众多长三角企业建立长期合作关系,服务上千家中外企业客户。
世通仪器力学实验室配备了一等活塞压力计、二等活塞压力计、质量比较仪、0.3级标准测力仪、能量发生器、弹簧冲击锤能量发生器、扭矩测试仪、材料试验机、标准转速装置、压力校准装置、百万分精密天平、微差压检定装置、振动冲击分析系统等精密仪器及标准件,可开展质量、衡器、力值、能量、扭矩、转速、压力、硬度、振动、冲击、密度、容量等项目的校准。
砝码校准能力:克组和毫克组高可开展F1等级,公斤组为F2等级,力值高校准能力可达2000kN,扭矩大校准能力可达1000Nm,压力标准准确度等级高为0.025级,高的校准能力可达60MPa,冲击高的校准能力可达3000g。
电子测距仪有很多种,如:手持测距仪、激光测距仪、超声波测距仪、红外测距仪,介绍其中的几种; 光学测距仪,英文全名"Optical Range Finder"。可直译为"射程测量仪"它是采用三角函数概念来测算距离的仪器。其概念虽然在18世纪就已经提出,但无奈当时落后的光学镜头加工技术难以实现。
在测距仪出现以前,的10英寸和12英寸火炮想击中10000码以外的目标简直就是天方夜潭。在使用“测距炮”这种笨办法的年代里。火炮仅能击中2000码以内的目标。
在19世纪中后期激烈的海上竞争中英法德三国率先装备测距仪,其第1次参加实战则是在甲午中日战争中的大东沟海战。日本联合舰队在前获得了产自英国的Barr&Stround公司的F.Q.2型双像式光学测距仪,并将其装在第1游击编队先导舰“吉野”号上。但在当时缺乏射控管制与指挥系统的大前提下,这套装备发挥的效果实在微乎其微。
1912年,也就是在无畏级下水的第5年,在被称为“现代海军炮术之父”帕西。斯科特勋爵士的设计和指导下,英国维克斯公司制造出了单人控制椅。这套系统包括连接了立的枪炮长回旋式测距仪的目镜,水平角度和俯仰的设定机构以及这些数据的传输装置,还有一个手枪形的击发开关。这就是世界上第1台“火控指挥仪”。1912年11月21日超无畏舰“雷鸣”号和“猎户座”号在恶劣的海况下全速平行行驶,在大约8500码的距离上对着彼此拖带的靶标炮击了3分30秒,恶劣的海况使船体难以完成稳定,其间装备了斯科特式指挥仪的“雷鸣”号发射39发13。5英寸炮弹,其中23发对拖靶形成跨射。而“猎户座”号的27发中只有4发被判定为跨射。斯科特系统获得了的成功。
1913年斯科特对该系统进行了改进,伟大的德雷尔火控台诞生。也在这年海军对自己的主力舰全面换装这套系统,自“无畏”号诞生7年之后真正意义上“无畏舰时代”来临。
是否装备火控指挥系统是区别无畏舰与前无畏舰的主要特征。
全站型电子速测仪(Electronic Total Station)。是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。广泛用于地上大型建筑和地下隧道施工等精密工程测量或变形监测领域。
可为您提供以下计量仪器校准:
砝码、质量测量仪器:标准砝码、砝码等。
数字指示秤、模拟指示秤、非自行指示秤等衡器:电子天平、机械天平、架盘天平、扭力天平、液体比重天平、电子秤、电于皮带秤、定量包装秤、定量自动衡器、台秤等。
拉力试验机、推拉力计、扭矩等力值测量仪器:推拉力计、数字式压力计、材料试验机等。
压力表和真空表:精密压力表、数字压力表、压力(差压、压)变送器、液体压力计、U型压力计、氧气乙炔表、各种级别的压力表等。
布、洛、维及橡胶等各类硬度计:硬度计等各种金属硬度计、邵氏硬度计、定负荷橡胶国际硬度计、微型橡胶国际硬度计等各种非金属硬度计、韦氏硬度计、巴氏硬度计等。
转速测量仪器:机械式转速表、数字式转速表、转速检定装置等。
振动仪器:机械振动台、数字振动台、振动测试仪、测振仪等。
密度计、比重计、波美计
玻璃量具:滴定管、量筒、量杯、分度吸管等。
安规类设备:弹簧冲击锺、摇摆试验机、寿命试验机、球压装置、试验箱、摆锺冲击试验机等。
东莞总部:广东省东莞市道滘镇厚德上梁洲工业区四横路7号
世通仪器检测中心,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,可加急出证书,欢迎来电咨询!1、拉力试验机力值的测量是经过测力传感器、扩大器和数据处置系统来完成测量。从资料力学上得知,在小变形前提下,一个弹性元件某一点的应变ε与弹性元件所受的力成正比,也与弹性的变构成正比。以S型试验机传感器为例,当传感器遭到拉力P的效果时,因为弹性元件外表粘贴有应变片,由于弹性元件的应变与外力P的巨细成正比例,故此将应变片接入测量电路中,即可经过测出其输出电压,然后测出力的巨细。
2、形变的测量经过形变测量安装来测量,它是用来测量试样在实验进程中发生的形变。 该安装上有两个夹头,经由一系传记念头构与装在测量安装顶部的光电编码器连在一同,当两夹头间的间隔发作转变时,带动光电编码器的轴扭转,光电编码器就会有脉冲旌旗灯号输出。再由处置器对此旌旗灯号进行处置,就可以得出试样的变形量。
3、横梁位移的测量其道理同变形测量大致一样,都是经过测量光电编码器的输出脉冲数来取得横梁的位移量。
折叠编辑本段注意事项
一、拉力试验机加荷时,指针颤动或时走时停
1、离合器齿轮磨损:需要修理或更换。
2、摩擦盘的皮垫圈或弹簧磨损:需更换皮垫圈或弹簧。
3、操纵手柄移位:调整操纵手柄,使其与牙槽配合好。
二、更换摆砣时指针不回零
1、拉力试验机安装不水平:用水平仪把试验机调整水平。
2、摆锤不垂直:只挂A砣。调整平衡砣,使之垂直。
三、拉力试验机摆锤回位太快或太慢
1、缓冲阀挡位位置放置不当:调整缓冲阀到适当位置。
2、液压油黏度过低或过高:液压油黏度过低时摆锤回落快,黏度高时回落慢.应更换适当黏度的液压油。
3、缓冲阀内、油管内或液压油有脏污:清洗缓冲阀、油管。更换液压油。
四、拉力试验机指针回零滞怠或不稳定
1、指针轴承、主轴轴承锈蚀或有油污:清洗或更换轴承。
2、齿杆变形或齿杆与齿轮不啮合:校直齿杆或清洗、修整齿轮、槽轮等传动部件。
3、缓冲阀内有脏污:清洗缓冲阀。
五、拉力试验机示值正偏差
1、短臂刀刃有松动:把刀刃紧牢。
2、摆砣偏轻:给砣配重(要兼顾A、B、C砣的重量)。
六、示值负偏差主要原因是各部件之间的摩擦阻力过大
1、指针轴承、摆轴轴承和测力传动部件摩擦阻力过大:主要是调整、清洗轴承及测力传动部件.消除不正常的摩擦阻力。
2、上夹头、从动针弹簧片松紧度和描绘装置的摩擦阻力大:调整上夹头、从动针弹簧片松紧度和描绘装置部件.消除不正常的摩擦阻力。
3、活塞杆与摆杆相接部位不灵活:调整两者相接部位。使之灵活自如。
七、从动针滞阻或移位
1、从动针弹簧片弹力大小或从动针与指示盘摩擦阻力大小造成的影响:调整从动针弹簧片的弹力或从动针与指示盘的问隙。
2、从动针两端重鼍有偏差:调整两端重量,使其平衡。
八、示值无规律的偏差
1、齿杆、齿轮有油污、磨损或有毛刺:消除齿杆、齿轮的油污、毛刺,找出超差时的齿杆接触点,然后修正齿杆、齿轮;如不能消除误差.更换齿杆、齿轮。
2、拉力试验机试验机安装不水平:调整水平。
3、齿杆弯曲:校直或更换齿杆,调整滚动槽轮的问隙。
九、计算机软件联机后出现提示框信息显示超载
解决方案是检查计算机与试验机的通讯线是否脱落;检查联机选择传感器是否选择正确;检查近的试验或操作键
盘时传感器是否被撞过;检查出现问题之前是否使用了软件的校准或标定功能;检查是否手动更改过校准值、标定值或硬件参数中的其他信息。
十、试验机主机电源不亮,不能上下移动
解决方案是检查接入试验机的电源线路是否连接正常;检查急停开关是否处于拧起状态;检查接入试验机的电源电压是否正常;检查机器插座上的保险是否烧断,请取出备用保险丝安装即可。
十一、试验机主机电源有电但设备不可以上下移动
解决方案是检查是否是15S(时间)以后设备还无法移动,因为主机开机需要自检,大概需要15S时间;检查上下限位是否再恰当的位置,有一定的运行空间;检查接入试验机的电源电压是否正常。
计量器具的使用保护
计量器具管理部门应制定必要的计量器具管理规定及计量器具操作规程,并配合使用部门对计量器具的使用者进行培训。
计量器具的使用和保护尤其要做好:
(1)根据需要,对检测设备进行调整和再调整。调整时应遵守操作规程,防止调整不当而失准。
如:万用表、数字式游标卡尺使用前要进行归零调整。
(调整:指使计量器具的准确度和其他性能达到规定要求的操作。)
(2)标识检测设备的校准状态
一般在检测设备上贴校准状态标签,让使用者了解检测设备的状态(合格、限制使用、停用等)和有效期限。
因体积小或影响操作等原因而不宜贴标签的检测设备,其校准状态标签可以贴在包装盒上或由其使用者妥善保管,但设备上要刻上编号,便于追溯。
(3)采取措施,防止调整时校准失效。比如:对操作人员进行资格确认,编制调整作业指导书;对校准点进行铅封。
(4)采取措施,防止检测设备在搬运、维护、储存时损坏和失效。如提供适宜的环境条件、采取防护措施等。
(5)作好计量器具失效时的处理汽车电子测试
一旦发现检测设备偏离计量校准状态(失准)时,应对检测结果的有效性进行评价,并队设备和受影响的产品采取适当的措施高加速寿命试验。
a)对被检产品,并非要重新检测,但对其有效性评价。追溯时间一般应计算到上次核准的时间。
b)对设备和受影响的产品采取适当的措施,包括:
◆必要时,追回测量过的产品进行重新测量。
◆对设备进行修理并重新校准。
c)应查明失准的原因。应对检定或校准方法、校定或校准周期、人员工作责任性、操作熟练程度、计量器具的适用性等重新进行评价,根据评价结果适当采取措施。
不确定度的选配方案
测量器具的不确定度是测量结果准确可靠的首要条件。在不确定度满足预期使用条件下,还应考虑其他测量特性,如稳定度、量程、分辨力,同时还应考虑成本、使用方便性等特点。
(1)不确定度选择应满足的条件
选择时,应使所选用的计量器具不确定度U1等于或小于计量器具引起的测量不确定度允许值U0,即:
U1≤U0
U0可通过查表[表1:计量器具引起的不确定度允许值(针对尺寸测量)得出,计算公式如下:
U0=T/3 MCP
式中:MCP–检测能力指数;
T–为产品参数加工制造允许的误差范围,或者工艺过程监测控制参数允许变化范围。
注:
Ⅰ计量器具不确定度U1可视为计量器具的大测量误差。
Ⅱ计量器具引起的测量不确定度允许值U0可视为计量器具引起的大测量误差允许值。
不同的计量器具有不同的不确定度数值。表2为千分尺和游标卡尺的不确定度,表3为比较仪(分度值≥0.0005mm)的不确定度,表4为指示表(分度值≥0.001mm)的不确定度,表5为大尺寸外径千分尺的不确定度推荐值,表6为大尺寸游标卡尺的不确定度推荐值,表7为杠杆千分尺的不确定度推荐值。
计量器具的经验选配方法
可以凭经验选配计量器具,经验选配原则:
U1≤(1/3–1/10)T
式中:U1–为计量器具的不确定度(可视为计量器具的大测量误差)。
T–为产品参数加工制造允许的误差范围,或者工艺过程监测控制参数允许变化范围。
世通仪器检测中心,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,可加急出证书,欢迎来电咨询!
光在真空(因为在空气中与在真空中的传播速度差不多,所以一般用在空气的传播速度)中的速度与光在该材料中的速度之比率。材料的折射率越高,使入射光发生折射的能力越强。折射率越高,镜片越薄,即镜片中心厚度相同,相同度数同种材料,折射率高的比折射率低的镜片边缘更薄。折射率与介质的电磁性质密切相关。根据电磁理论,εr和μr分别为介质的相对电容率和相对磁导率。折射率还与波长有关,称色散现象。光由相对光密介质射向相对光疏介质。且入射角大于临界角,即可发生全反射。
基本介绍
光在空气中的速度与光在该材料中的速度之比率。材料的折射率越高,使入射光发生折射的能力越强。
折射率越高,镜片越薄,即镜片中心厚度相同,相同度数同种材料,折射率高的比折射率低的镜片边缘更薄。
折射率与介质的电磁性质密切相关。[折射率]
折射率
折射率
光从真空射入介质发生折射时,入射角γ的正弦值与折射角β正弦值的比值(sinγ/sinβ)叫做介质的“折射率”,简称“折射率”。它表示光在介质中传播时,介质对光的一种特征。
折射率与波长的关系
同一单色光在不同介质中传播,频率不变而波长不同。以λ表示光在真空中的波长,n表示介质的折射率,则光在介质中的波长λ'为
λ'=λ/n
折叠折射率
n=sinr/sinβ
设光在某种媒质中的速度为v,由于真空中的光速为c,所以这种媒质的折射率公式:
n=c/v
由于光在真空中传播的速度大,故其它媒质的折射率都大于1。同一媒质对不同波长的光,具有不同的折射率;在对可见光为透明的媒质内,折射率常随波长的减小而增大,即红光的折射率小,紫光的折射率大。通常所说某物体的折射率数值多少(例如水为1.33,水晶为1.55,金刚石为2.42,玻璃按成分不同而为1.5~1.9),是指对钠黄光(波长5893×10^-10米)而言。
折叠相对折射率
光从介质1射入介质2发生折射时,入射角θ1与折射角θ2的正弦之比n21叫做介质2相对介质1的折射率,即“相对折射率”。因此,“折射率”可以看作介质相对真空的折射率。它是表示在两种(各向同性)介质中光速比值的物理量。
相对折射率公式:n21=sinθ1/sinθ2=n2/n1=v1/v2
折射率
折射率
光学介质的一个基本参量。即光在真空中的速度c与在介质中的相速v之比
真空的折射率等于1,两种介质的折射率之比称为相对折射率。例如,介质的折射率为n1,第二介质的折射率为n2,则n21=n2/n1称为第二介质对介质的相对折射率。某介质的折射率也是该介质对真空的相对折射率。于是折射定律可写成如下形式
n1sinθi=n2sinθt
折叠影响折射率的因素
两种介质进行比较时,折射率较大的称光密介质,折射率较小的称光疏介质。
折射率
折射率
折射率与介质的电磁性质密切相关。根据电磁理论,,εr和μr分别为介质的相对电容率和相对磁导率。折射率还与波长有关,称色散现象。手册中提供的折射率数据是对某一特定波长而言的(通常是对钠黄光,波长为5893埃)。气体折射率还与温度和压强有关。空气折射率对各种波长的光都非常接近于1,例如空气在20℃,760毫米汞高时的折射率为1.00027。在工程光学中常把空气折射率当作1,而其他介质的折射率就是对空气的相对折射率。
实验测定
介质的折射率通常由实验测定,有多种测量方法。对固体介质,常用小偏向角法或自准直法,或通过迈克尔逊干涉仪利用等厚干涉的原理测出;液体介质常用临界角法(阿贝折射仪);气体介质则用精密度更高的干涉法(瑞利干涉仪)。
折叠编辑本段测量方法
折叠偏向角法
对于一个顶角为θ、折射率为n待测的棱镜,将它放在空气中(n1=n2=1)。当棱镜表面的入射
折射率
折射率
角i1等于在第二表面的折射角折射率测量时,偏向角达到小值δmin,则(2)
用测角仪测定 δmin(图1)和θ,便可算出n。
用精度不低
折射率
折射率
于1角秒的大型精密测角仪,采用小偏向角法测定固体光学材料的折射率,可获得±5×10-6的测量精度,是各种测量方法中精度较高的一种。
折叠自准直法
在测角仪上也可采用自准直法测量材料的折射率。如图2所
折射率
折射率
示,光线在棱镜前表面的入射角为i,如果折射光线OC刚好垂直于棱镜后表面BD,则反射后的光路COS与入射光路SOC重合,称为自准直光路。由图2所示几何关系知道,此时光线在前表面的折射角i┡与棱镜顶角θ 相等,因此根据折射定律
n=sini/sinθ,
测出i和θ,即可求得n。
在测角仪上通过观察和调整来建立小偏向角光路或者自准直光路,不仅麻烦,且有主观误差,近年来,中国在数字式测角仪的基础上研制了全自动折射仪,在这种仪器上用小偏向角法或自准直法测折射率时能自动寻的,测量结果也能自动处理。测定波长范围可扩展到紫外和红外(0.2~15微米)。
折射率
折射率
临界角法 具有代表性的仪器是阿贝折射仪。 图3表示折射率 n待测的液体试样涂布在该仪器两块棱镜的接触面间(测固体试样时不需要进光棱镜)。 标准棱镜本身的折射率已知为 n0,在n0>n的条件下,光线折射进入标准棱镜。光线入射角不会超过90°,由折射定律知道折射角不会超
过 90°。
因此在仪器视场中看到与imax折射率测量对应的明暗分界线,根据明暗分界线位置的变化便可确定 n
折射率
折射率
值。假如光线逆行,则imax折射率测量正好是发生全反射的临界角,因此称为临界角法。
阿贝折射仪的光学系统见图4。在度盘上根据有关公式标出一系列n值,当分划板的叉丝中心对准明暗分界线时,可直接由度盘读出被测试样的n值,使用很方便。阿米奇棱镜用来消除分界线上的色散现象,因此,虽然采用白光而不用单色光源,仍能得到无色而清晰的明暗分界线。阿贝折射仪的折射率测量范围为1.3~1.7,精度Δn=±3×10-4。