世通的仪器校准实验室实施原则
世通仪器是一个严谨,公平,公开,公正的企业,我们要将这个理念落实到工作的每一步当中,世通仪器的每个人都在严格遵守,例如我们的仪器校准实验室实施原则。
“将相关的资源和活动作为过程进行管理,可以更地达到预期的结果。”
通过利用资源和活动实现管理,将输人转化为输出的一组活动,可以视为一个过程,诸如合同评审、检测实现、结果报告等都可视为一个过程。通常一个过程 的输出直接成为下一个过程或几个过程的输入,有时多个过程间也形成比较复杂 的过程网络。通过对过程的识别,以过程为基本单元,确定输人和输出,确定将输 人转化为输出所需的各项活动、职责和义务,以及所需的资源、活动间的接口等, 便可实现过程的增殖,达到预期的管理结果。系统地识别和管理实验室所有的过 程,特别是这些过程之间的相互作用,“就是过程方法”。
实施本原则一般应采取的主要措施是:
1.识别质量管理体系所需的过程,包括管理职责、资源配置、仪器检测/仪器校准的实现和分析改进有关的过程,确定过程的顺序和相互作用;
2.确定每个过程为取得预期结果所的关键活动,并明确为管理好关键过程的职责和权限;
3.确定对过程的运行实施有效控制的准则和方法,并实施对过程的监控以及对监控结果的数据分析,发现问题,采取改进措施的途径,包括提供必要的资源,实现持续改进,以提高过程的有效性;
仪器校准评价过程结果可能产生的风险、后果及对顾客和相关方的影响。
世通的仪器校准实验室质量管理制度
我们为了更好的为各位仪器厂商提供更的服务,我们对本公司的人员以及我们的仪器校准实验室的所有工序人人员有了一些严格的规定,做到公开,公正,透明等原则。例如:
1.我们对员工进行职业道德教育,使员工明确自身贡献对社会和仪器校准实验室所起的作 用和重要件、个人利益与顾客和实验室利益的关系,从而建立起高度的责任感和 使命感;
2.把仪器校准实验室的总目标分解到各职能部门和业务线,让员工看到更贴近自己的目标,激励员工为实现目标而努力,并对员工的业绩给予评价;
3.建立鼓励员工,为提高自身能力而接受教育、培训、分享知识和经验的措施;
4.建立完整、有效的激励措施(包括分配制度和奖励制度),使“全员参与” 给实验室带来收益的同时,员工也从中得到了物质、精神方面的回报和成就感。等等。
电子仪器校准的不确定度计算方法
通常在一些设备仪器校准或仪器校正试验中,常使用一些大型的电测设备,进行电信号的录取及数据处理。以往,对这类非标准设备的计量检定或校准,多采用更的通用电子测量仪器作为其参考标准。但是,随着设备系统的发展,鉴定试验用测试设备的精度也越来越高,有些与现有的计量参考标准精度相当。若仍采用目前的计量标准对这些电测系统进行校准,就考虑参考标准的测量不确定度,以及在此情况下被测系统扩展不确定度的估计方法。我们将就此问题进行讨论与分析。
新的不确定度估计方法
1.一般被测系统的不确定度估计
对于不确定度的估计可采用测量列结果的统计分布估计,并以实验标准偏差表征。同时,也可采用基于经验或参考标准仪器信息的假定概率分布估计。当参考标准与被校准系统精度相当时,测量结果统计分布估计的测量次数(样本量)引起的误差,以及参考标准自身的不确定度带来的误差将被考虑。
新的不确定度估计方法是将参考标准与被校准系统同时对一设定的电参量进行重复测量,参考标准已经上计量检定合格,测量标准值在其技术指标所规定的置信区间内,测量结果符合正态分布,于是有不确定度
式中:t是所给置信概率下置信区间的包含因子;
σRef是参考标准正态分布的总体标准偏差,此参数可由技术指标中所给的扩展不确定度求得;
k是样本量修正因子,它是指在与σRef相同的置信概率的情况下,由于有限次测量而对应置信区间包含因子的修正值;
SDUT是被校准系统统计测量的实验标准偏差;
δ是参考标准与被校准系统统计测量的样本均值之差。
公式(1)推导如下:
设X1, X2分别为参考标准及被校准系统(DUT)的测量读数,X2的测量误差可简单表示为X1- X2。考虑用标准偏差来表示的标准不确定度,对于扩展不确定度,只需在各自分布的方差前乘以置信因子。
由概率论正态分布的定义可知,方差σ2就是无穷多次测得值误差平方的平均值。有:
又因为不确定度可用测量结果的统计分布来评价,对于正态分布可用标准偏差来表征。于是有:
在式(1)中σRef是由参考标准技术说明书中的扩展不确定度按B类标准不确定度计算而得。而对于大多数电子仪器公司如HP , Fluke和Datron/Wavetek,它们给出的不确定度指标其置信概率均为99.7%,其置信区间半宽度包含因子为3。当采用这些公司的仪器作参考标准时,测量结果不确定度的置信概率也要求与之相当。而由于在实际测量中,测量次数有限,SDUT不是σ的无偏估计,当与参考标准不确定度取相同的置信概率时,对被校准系统的合成标准不确定度的置信区间半宽度进行修正。即SDUT乘以修正因子K。表1给出了95%和99%置信概率下,各种测量次数时k的取值。
例如:当参考标准的不确定度其置信概率为95%时,相应的置信区间半宽度为2σ。而实际测量次数为l0次,此时公式(1)中的K就不能为2,而应该是3.38.
由公式(1)的推导可知,公式(1)的计算结果实际上表征了被测系统的扩展不确定度,其包含因子为3,置信水平为99.7%。由于被校准系统本身也是测量系统,因此用扩展不确定度比采用合成标准不确定度来描述更为恰当。
几种特殊情况下不确定度的计算
在实际工作中,对于被测系统而言,虽然总是存在实验标准偏差。但有时由于被测系统显示位数的限制,在统计测量时,并不能观测得到。此时,公式(1)中的SDUT=0。而对于参考标准而言,即使统计观测结果的实验标准偏差为零,在公式(1)中的σRef仍将根据其技术指标所给扩展不确定度及置信概率进行计算。参考标准及被测系统的统计测量数据主要是用于获得δ值。在这种情况下,公式(1)变为:
另一种情况是有时采用的参考标准,其技术指标所给出的扩展不确定度的置信概率为(如SimposonElectric公司等)。由此推算出的合成标准不确定度不是建立在统计测量基础上的,而是理论上的不确定度额定值。它实际上给出了测量标称值一定在其置信区间的大误差极限。此时,公式(1)中的项被δ项取代。公式((1)变为:
式中的δ是被测系统统计测量的算术平均值与参考标准统计测量数据中的大值之差。
对于数据传输系统以及信号放大器系统,一般来讲其本身不显示测量结果,但有时要求给其数据传输或放大倍数的扩展不确定度。此时在该类系统的输入及输出端分别并接参考标准,同时读取测试结果。
对于有一定增益的放大器,将测试结果经归一化处理后,按下式计算信号放大器系统的扩展不确定度。
式中:t是所设定置信概率下的置信区间的包含因子。
σ1是输入端参考标准读数的标准偏差。
σ0是输出端参考标准读数的标准偏差。
δ是参考标准输入端、输出端读数均值归一化之差。
尽管对放大器输入端、输出端测量结果的不确定度也可以用参考标准的技术指标所给出的扩展不确定度值进行计算,但是这样获得的结果往往偏大,而由参考标准对放大器输入端、输出端的测试数据计算出的扩展不确定度则更为客观。
2.新的不确定度计算方法的实际应用
作为前述方法的实际应用,我们对某型弹道分析测量系统进行校准,并计算其扩展不确定度。弹道分析测量系统是模块化测试系统,主要用于内、外弹道参数的测量。
对该系统中的脉冲时间测量单元进行校准所采用的参考标准为HP54502数字存储示波器,将参考标准与被测系统并联,二者同时测量一脉冲信号源的脉冲延时输出,一共测量十次。
从HP54502数字存储示波器的技术说明书中可知,其时间测量的扩展不确定度是:2.0%*s/div+0.01%*Δt+500ps。时基设置为500ns/div,十次重复观测读数的算术平均值为3.66720ms,则扩展不确定度U=377.2ns,又知HP公司电子仪器所给不确定度的置信概率为99.7%,所以有3σRef=377.2,即σRef=125.7ns。同时,由表1可得:k=5.59。其他测试结果如表2。
则该系统中的脉冲时间测量单元的扩展不确定度为805.9ns(99.7%的置信概率)。
我们给出一种实用的计算不确定度的方法。当对电子仪器进行校准时,遇到参考标准与被测设备精度相当的情况,采用此方法可给出较为客观的结果。同时,在计算被测设备不确定度时,由于直接引用了参考标准技术说明书提供的参数,所以为实际使用带来了方便。另外,通过对被测设备统计测试置信区间包含因子的修正,避免了由于选择测量样本量的不同,而对被测设备扩展不确定度计算的影响。
力学计量仪器校准相关问题分析
力学对计量的依赖性非常强,它以力为基础,对各种自然现象进行解释因此它需要依靠计量提供准确数字,这样可以增强说服力。力学涉及到的内容较为广泛,其中主要有光速、压力、速度、温度等为了符合力学实验要求,现阶段的力学仪器类型也越来越多,例如拉力试验机、材料试验机等,力学仪器不仅在实验中常常被应用在人们日常生活中的应用也较为广泛。
一、力学计量概述
(一)流量计量。根据流体区,可对流量计量进行划分将其分为气流量计量、油流量计量、水流量计量三种类型流量测量介质不能互换,不过在计量方法上基本一致。现阶段流量计量发展主要表现为两种情况,分别为动态流量校准与介质流量计量、极端量值标准研发。
(二)压力计量。在工程施工技术测量中所谓压力也就是指强压在压力计量内,压力也同样指的是强压。压力计量的主要工作就是校准与鉴定压力模块、压力变送器、精密压力表、压力传感器等,同时还要负责检测与校准数字压力计。压力计量包含动态检定与静态检定两种类型,静态检定又分为砝码检定与对比检定;动态检定分为正弦压力法与激波管法。在静态检定中,活塞式压力计较多,它可分为液体式、气体式两种类型。动态压力对传感器的检定工作主要依靠正弦压力法与激波管法完成。目前随着计算机技术的不断进步与发展河将电子信息技术融入力学计量中,便于采集与处理被测数据减少人工操作提高计量的准确性。
(三)振动计量。振动描述通过速度、位移、频率、加速等完成振动测试的结果是否准确主要在于计量结果是否。
在20世纪50年代初期,很多国家得出了不同的振动校准结果。这表明仪器校准结果存在较大误差经过不断研究后校准误差逐渐降低主要原因在于仪器校准技术的持续发展与进步。
(四)质量计量。在SI中质量是力学计量的基本单位利用kg符号表示。在质量计量过程内,需利用天平对砝码质量进行测量质量计量水平可依据天平与砝码研究情况作出判断。质量计量会受到很多因素的影响,尤其环境对其的影响较大,空气对流会影响计量结果。另外磁化对计量结果的影响非常大因此,现阶段应该着重研究如何降低其他因素对质量计量的干扰。
二、力学计量仪器校准中的相关问题
(一)实现计量法的统一。从力学计量的实际情况上看计量并非人们平常所了解的一样。我们通常意义上认为的仪器计量只包括物理学,认为力学计量注重的就是力学,然而事实并非如此。仪器计量关系到我们的生活,因此,要实现计量统一所谓计量统一,就是指计量法的统一。通过统一的计量法,可避免国家或个人因计量标准未统一而引发矛盾因此为了提高力学仪器检定的有效率,实现统一化的计量标准。国家与国家间的计量标准存在差异,我国也有计量标准在使用自己国家的计量标准时,也可以利用国际计量标。我国主要采用自己国家的计量标准,不过在物理学、力学等方面采用国际统一标准,可以使我国的学术领域与国际接轨。只有建立统一的计量标准,才能提高计量度,确保力学计量充分发挥作用。
(二)计量检定器具性能。计量检定工作实际上是以测评计量单位实体为基础对器具性能进行有效判断。通常情况下计量检定工作由相关机构负责执行,主要措施为到负责机构盖验公章或取得相关证明。我国颁布的相关法律中同样有条例表明机构经国家认可后,才可享有检验计量器具的权利其他机构均无权干涉。若计量检定工作由法定部门开展与实施则需具备计量基准,这是确保计量工作顺利进行的前提条件也是计量工作过程中值得注意的问题。另外人员与知性计量检定部门要遵循严格执法、监督行政法等基本原则,一旦发现不法行为,要给予严厉处罚。我国制定了技术监督法其中规定计量检定工作由国家机构在不违反法律的情况下负责开展。
(三)单元检定与整体检定。要想确保计量检定的性就了解其操作方法。衡器是一种特殊的电子秤,它也被称为天平在力学计量中有着重要作用,德国科学家虎克使其逐渐定型。在检定工作实施前了解仪器的具体情况,观察其是否可以正常运行。检查仪器有无受损痕迹。检定工作的开展一般有两种形式,分别为单元检定与整体检定。
整体检定是对衡器实际使用程度进行检定它是一种基本的检定形式其检定内容主要包括基准计量、标准计量、器具计量。明确实际数据与检定数据偏差的大小,并记录偏差有无变化。每次的检定结果都需要详细记录,这样在计算修正值时更为方便。值得注意的是若被检定的计量器具可取修正值,为了降低错误率工作人员需将计量次数增加,例如平常计量次数为3次灰,则目前可能要测量8至10次,便于降低误差发生率。整体检测法也存在一些缺陷,表现为在受检定计量器具质量较低的情况下要想找出计量器具存在的问题,难度非常大。
为了避免上述问题的出现还可以采用单元检定法。在以往的实验中通常将单元检定法称为部件检定法,在部分教科书中,又称之为分项检定法,其工作原理为增加检定次数将多次检定计量结果进行比较,并分析影响计量检定结果产生偏差的因素后计算出总不确定度。检查计量器具的质量情况,观察其是否属于合格产品。单元检定法与整体检定法两者互补,均可弥补对方的不足,因此在计量检定工作开展过程中河将这两种方法联合使用,便于增强计量结果的准确性提高力学计量效率。力学计量检定过程非常复杂涉及的内容十分广泛它对计量统一性具有较高要求在平常的计量中我们可合理利用两套计量标准,坚持以国际计量标准为主。国家相关部门可组织计量检定工作的开展它的开展不能违背国家规定,在检定过程中,可将单元检定法与整体检定法联合使用便于弥补其中的不足。
三、结语
力学计量涉及的内容非常广泛随着技术的不断发展计量仪器类型也逐渐增多不过在仪器检定过程中仍然需要遵守相关原则在不违反计量检定规则的情况下进行。本文对力学计量进行了详细阐述,了解了力学计量的基本内容然后分析了力学计量仪器检定中的相关问题。通过本次研究可明确力学计量的检定规则与内容,了解计量检定过程中需要注意的问题为日后的力学计量检定工作提供依据。